Synthesis and primary cytotoxicity evaluation of arylmethylenenaphthofuranones derivatives

MORGANE LARDIC ${ }^{1}$, CEDRIC PATRY ${ }^{1}$, MURIEL DUFLOS ${ }^{1}$, JEAN GUILLON ${ }^{2}$, STEPHANE MASSIP ${ }^{2}$, FRANCISCO CRUZALEGUI ${ }^{3}$, THOMAS EDMONDS ${ }^{3}$, STEPHANIE GIRAUDET ${ }^{3}$, LAETITIA MARINI ${ }^{3}$, \& STEPHANE LEONCE ${ }^{3}$
${ }^{1}$ Faculty of Pharmacy, Department of Pharmacochemistry, Nantes University, Nantes Atlantique Universities, BioCiT, UPRES EA 1155, 1 rue Gaston Veil, Nantes F-44000, France, ${ }^{2}$ EA 2962 - Pharmacochemistry, Faculty of Pharmacy, Victor Segalen Bordeaux 2 University, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France, and ${ }^{3}$ Institut de Recherches Servier, 125 chemin de ronde, F-78290 Croissy sur Seine, France

(Received 13 December 2005; in final form 20 February 2006)

Abstract

New series of 2(or 3)-arylmethylenenaphtho[2,1-b]furan-3(or 2)-ones were synthesized, characterized and tested for anticancer properties in vitro. The target compounds were prepared by Knoevenagel coupling between the naphthofuranones 3, 28-30 and formyl derivatives. 2-(4-Oxo-1-benzopyran-3-ylmethylene)naphtho[2,1-b]furan-3-one $\mathbf{3 6}$ was the most active compound $\left(\mathrm{IC}_{50}(\mathrm{~L} 1210)=1.6 \mu \mathrm{M}\right)$. These compounds were also evaluated, in an independent manner, as inhibitors of Src protein tyrosine kinase, but only minor activity was observed.

Keywords: 3-(arylmethylene)naphtho[2,1-b]furan-2(3H)-ones, 2-(arylmethylene)naphtho[2,1-b]furan-3(2H)-ones, Knoevenagel coupling, Cytotoxicity evaluation

Introduction

Angiogenesis, the growth of new blood vessels from existing host vasculature, plays a fundamental role in the development of solid tumors. During the last few years, development of small molecule tyrosine kinase inhibitors as anti-angiogenic and anti-tumor agents has generated great interest. Indeed, there are multiple tyrosine kinase receptors which appear to have key roles in the generation of new tumor blood vessels and, as such, represent valuable targets for cancer chemotherapy [1].

The former SUGEN organization (now part of Pharmacia) has initially focused its efforts to identify and develop inhibitors of tyrosine kinase incorporating an indolin-2-one pharmacophore (Figure 1). SU5416,
one of the earliest compounds of this class, was found to be a potent inhibitor of both VEGFR and PDGFR kinases, by competing for ATP binding at the enzyme catalytic site [2].

In a previous work on the synthesis of potential inhibitors of angiogenesis, we reported a number of arylmethylenebenzofuranone derivatives and pointed out that the replacement of indolin-2-one in SU5416 by 2,3-dihydrobenzo[b]furan-2-one (Figure 1) induced a decrease in angiogenesis comparable to that observed with SU5416 [3].

These encouraging results prompted us to investigate novel oxygenated derivatives liable to exert anticancer activity. This study was aimed at exploring the effect of the replacement of the benzofuran-2-one

$\mathrm{R}=\mathrm{H}:$ SU5416
$\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}:$ SU6668

$\mathrm{X}=\mathrm{H}, \mathrm{OH}$
$\mathrm{Y}=\mathrm{CH}, \mathrm{N}$
$\mathrm{R}, \mathrm{R}_{1}=\mathrm{H}, \mathrm{CH}_{3}$

Figure 1. Indolin-2-one and benzofuran-2-one structures.
moiety by a naphthofuran-2(or 3)-one core, substituted or unsubstituted on the homocycle.

Materials and methods

Chemistry

Instrumentation. Melting points were determined on an Electrothermal IA 9000 melting point apparatus in open capillary tubes and are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AC 250 or AVANCE 400 spectrometer. Chemical shifts (δ) are reported in part per million (ppm) relative to tetramethylsilane as internal standard (in NMR description, $\mathrm{s}=$ singulet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet and $\mathrm{br}=$ broad). Coupling constants J are given in Hz. IR spectra were recorded on a Perkin-Elmer Paragon 1000 PC spectrometer; only the most significant absorption bands have been reported. Electrospray ionization (ESI) mass spectra were recorded on a ESQUIRE-LC Ion Trap System. Reactions were monitored by TLC analysis using Merck silica gel 60F-254 thin-layer plates. Column chromatography was carried out on silica gel Merck 60 ($70-230$ mesh ASTM). Chemicals and solvents used were commercially available. 2-Formyl-3,5-dimethylpyrrole 5 was prepared by a Vilsmeier-Haack reaction [4]. N-Methylation of 4 -formylimidazole was carried out using the couple $\mathrm{NaH} / \mathrm{DMF}$ in presence of $\mathrm{CH}_{3} \mathrm{I}$ as previously described [5]. 2-Hydroxyphenylacetic acid 51, 2-naphthol 1, 2-naphthoxyacetic acid 25, benzofuran$3(2 \mathrm{H})$-one $54,3,5$-dibromo-4-hydroxybenzaldehyde 4, 4-formylimidazole $\mathbf{6}$ and 3-formylchromones 9-12 are commercially available (Figure 2).

Benzo[b]furan-2(3H)-one (52) [15]. A solution of 2-hydroxyphenylacetic acid $51(5.00 \mathrm{~g}, 32.86 \mathrm{mmol})$ in 60 mL of xylene, containing a catalytic amount of p-toluenesulfonic acid ($0.30 \mathrm{~g}, 1.64 \mathrm{mmol}$) was refluxed for 2 h , under a Dean-Stark trap. After evaporation of the xylene, the residual oil was distilled under pressure. Yield: 89% as a yellow oil. Bp: $146^{\circ} \mathrm{C}$ (42 mmHg), lit[15]: $132-134^{\circ} \mathrm{C} \quad(18 \mathrm{mmHg})$.

Figure 2. Structures of the studied 3-(arylmethylene)naphtho[2,1b]furan-2(3H)-ones and 2-(arylmethylene)naphtho[2,1-b]furan$3(2 H)$-ones.
${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 3.95$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$); 7.18 (ddd, $1 \mathrm{H}, \mathrm{H}_{5}, \mathcal{F}=7.5,1.2$); $7.20\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{7}\right.$, $\mathcal{F}=8.0) ; 7.33$ (d, $1 \mathrm{H}, \mathrm{H}_{4}, \mathcal{F}=8.0$); 7.39 (ddd, 1 H , $\mathrm{H}_{6}, \mathcal{F}=7.5,1.2$). IR: $\mathrm{cm}^{-1} 1702,1614,1462$.

2,3-Dihydronaphtho[2,1-b]furan-2,3-diol (2) [10]. A solution of 2-naphthol $1(2.00 \mathrm{~g}, 13.9 \mathrm{mmol})$ and $\mathrm{KOH}(0.78 \mathrm{~g}, 13.9 \mathrm{mmol})$ in 28 mL of water was added dropwise to a 40% aqueous glyoxal solution $(12.00 \mathrm{~g}, 83.0 \mathrm{mmol})$. The mixture was stirred at $30^{\circ} \mathrm{C}$ for 3 h . The precipitate formed during the reaction was then filtered, washed with water and dried under vacuum. Yield: 80% as a beige solid. $\mathrm{Mp}: 61-62^{\circ} \mathrm{C}$ $\left(\mathrm{H}_{2} \mathrm{O}\right), \operatorname{lit}[10]: 60^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 5.26$ (dd, $1 \mathrm{H}, \mathrm{CH}, \mathcal{F}=6.8,1.5$); 5.73 (dd, $1 \mathrm{H}, \mathrm{CH}$, $\mathcal{F}=6.4,1.5) ; 5.89(\mathrm{~d}, 1 \mathrm{H}, \mathrm{OH}, \mathcal{F}=6.8) ; 7.20(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}_{9}, \mathcal{F}=8.8\right) ; 7.37\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{5}, \mathcal{F}=7.6\right) ; 7.47(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{OH}, \mathcal{F}=6.4) ; 7.55\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{6}, \mathcal{F}=7.6\right) ; 7.85-7.95$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}_{4}\right.$ and $\left.\mathrm{H}_{7}\right) ; 7.91\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{8}, \mathcal{F}=8.8\right)$. IR: $\mathrm{cm}^{-1} 3400,1589,1445,1140$.

Naphtho[2,1-b]furan-2(3H)-one (3) [10]. A mixture of 2,3-dihydronaphtho[2,1-b]furan-2,3-diol 2 (1.06 g , $4.82 \mathrm{mmol})$ in 20 mL of chloroform and 25 mL of 3 M aqueous HCl was heated at $50^{\circ} \mathrm{C}$ for 1 h . The organic layer was separated from the mixture, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Recrystallization from diisopropyl ether gave the desired product as a pale yellow solid. Yield: 85%. Mp: $99-100^{\circ} \mathrm{C}$ (diisopropyl ether), lit[10]: $102-103^{\circ} \mathrm{C}$. (Found M^{+}: 182.7, $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{O}_{2}$ requires 184.19). ${ }^{1} \mathrm{H}$ NMR (DMSOd_{6}): $\delta 4.20\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 7.46\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{9}, \mathcal{F}=8.9\right)$; 7.47 (ddd, $1 \mathrm{H}, \mathrm{H}_{5}, \mathcal{F}=7.6,1.2$); 7.59 (ddd, $1 \mathrm{H}, \mathrm{H}_{6}$, $\mathcal{F}=7.6,1.2) ; 7.74\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{7}, \mathcal{F}=8.4\right) ; 7.95(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}_{8}, \mathcal{F}=8.9\right) ; 7.98\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{4}, \mathcal{F}=8.4\right) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): 111.56 (C9); 32.28 (C3); 129.31 (C3a); 129.08 (C4); 127.59 (C6); 118.22 (C3b); 129.31 (C8); 124.93 (C5); 129.17 (C7a); 123.74 (C7); 151.73 (C9a); 175.15 (C2). IR: cm^{-1} 1803, 1631, 1578, 1459.

Naphtho[2,1-b]furan-3(2H)-one (28) [12]. 2-Naphthoxyacetic acid $25(8.00 \mathrm{~g}, 39.5 \mathrm{mmol})$ was heated
under reflux for 1 h with thionyl chloride in excess and a drop of dry DMF, in a round-bottomed flask equipped with a condenser. Thionyl chloride was distilled off; the acid chloride obtained was slowly added dropwise to $\mathrm{AlCl}_{3}(5.35 \mathrm{~g}, 39.5 \mathrm{mmol})$ in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cooled with ice water. The mixture was refluxed for 45 min . Then the cake was treated with cold water under a hood. The product was then extracted into ether ($4 \times 50 \mathrm{~mL}$). The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was evaporated in vacuum and the residue was purified by chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give naphtho [2,1-b]furan-3(2H)-one as a pale yellow solid. Yield: 80%. Mp: $129-130^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, lit[12]: $133^{\circ} \mathrm{C}$. (Found M^{+}: 184.5, $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{O}_{2}$ requires 184.19). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 4.77\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 7.29(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{H}_{9}, \mathcal{F}=9.0$); 7.38 (ddd, $1 \mathrm{H}, \mathrm{H}_{6}, \mathcal{F}=7.0,1.2$); 7.57 (ddd, $1 \mathrm{H}, \mathrm{H}_{5}, \mathcal{F}=7.0,1.2$); $7.86\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{7}\right.$, $\mathcal{F}=8.1) ; 8.12\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{8}, \mathcal{F}=9.0\right) ; 8.47\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{4}\right.$, $\mathcal{F}=8.1) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): 75.81 (C2); 112.72 (C3a); 114.49 (C9); 122.09 (C4); 125.45 (C6); 128.59 (C3b); 128.92 (C7a); 129.06 (C7); 130.02 (C5); 140.08 (C8); 176.16 (C9a); 199.42 (C3). IR: $\mathrm{cm}^{-1} 1689,1631,1579,1455$.

5-Methoxynaphtho[2,1-b]furan-3(2H)-one 30. Yield: 90% as a pale yellow solid. Mp: $154-155^{\circ} \mathrm{C}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. (Found M^{+}: 214.3, $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{3}$ requires 214.22). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 4.95\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$; $8.06\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{4}, \mathcal{F}=2.7\right) ; 3.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right) ; 7.97$ (d, $1 \mathrm{H}, \mathrm{H}_{7}, \mathcal{F}=8.8$); 7.19 (dd, $1 \mathrm{H}, \mathrm{H}_{6}, \mathcal{F}=8.8,2.7$); $7.30\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{9}, \mathcal{F}=8.8\right) ; 8.25\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{8}, \mathcal{F}=8.8\right)$. ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $55.48\left(\mathrm{CH}_{3} \mathrm{O}\right) ; 75.69$ (C2); 101.90 (C4); 111.29 (C6); 112.13 (C3a); 116.70 (C9); 123.97 (C7a); 130.51 (C3b); 130.72 (C7); 139.77 (C8); 160.90 (C5); 176.44 (C9a); 199.29 (C3). IR: $\mathrm{cm}^{-1} 3412,1671,1610,1585,1455$.

8-[(N-tert-butyloxycarbonyl) amino]naphth-2-ol 23 [14]. A solution of 8-amino-2-naphthol $\quad(5.00 \mathrm{~g}$, 31.42 mmol) and di-tert-butyl dicarbonate $(7.19 \mathrm{~g}$, 32.99 mmol) in 140 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 100 mL of THF was heated to reflux for 36 h . The mixture was allowed to cool to ambient temperature and then filtered to give a white powder. The filtrate was concentrated in vacuum and purified by chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give another fraction of the desired product. Yield: 93% as a white solid. Mp: $142-143^{\circ} \mathrm{C} \quad\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. (Found M^{+}: 253.6, $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{3}$ requires 259.30). ${ }^{1} \mathrm{H}$ NMR (DMSO$\left.d_{6}\right): \delta 1.53\left(\mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right) ; 7.13\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{3}\right.$, $\mathcal{F}=8.8,2.4) ; 7.26\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{6}, \mathcal{F}=7.6\right) ; 7.31(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}_{1}, \mathcal{F}=2.4\right) ; 7.43\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{7}, \mathcal{F}=7.6\right) ; 7.65(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}_{5}, \mathcal{F}=7.6\right) ; 7.80\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{4}, \mathcal{F}=8.8\right) ; 9.01(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{NH}) ; 9.79$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$). IR: $\mathrm{cm}^{-1} 3304,1690,1630$, 1529, 1455.
\{8-[(tert-Butyloxycarbonylamino)naphth-2-yl]oxy\}acetic acid (26). To a solution of $23(5.00 \mathrm{~g}, 19.28 \mathrm{mmol})$ in 15 mL of THF at $40^{\circ} \mathrm{C}$ was added bromoacetic acid $(2.95 \mathrm{~g}, 21.21 \mathrm{mmol})$ in 30 mL of water. Then, a solution of sodium hydroxide ($1.62 \mathrm{~g}, 40.49 \mathrm{mmol}$) in 7 mL of water was added dropwise at $40^{\circ} \mathrm{C}$. The mixture was heated to gentle reflux for 21 h . After cooling to room temperature, the THF was evaporated, the pH of the aqueous phase adjusted to 8 with a saturated solution of sodium hydrogen carbonate. The product was then extracted into ethyl acetate. The aqueous phase was acidified to pH 3 with concentrated hydrochloric acid. The mixture was stirred at $20^{\circ} \mathrm{C}$ for 1 h . The precipitate formed was then filtered, washed with water and dried under vacuum. Yield: 82% as a beige solid. Mp: $154-155^{\circ} \mathrm{C}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. (Found $\mathrm{M}^{+}: 317.1, \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{5}$ requires 317.34). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.55(\mathrm{~s}, 9 \mathrm{H}$, $\left.3 \times \mathrm{CH}_{3}\right) ; 4.85\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 7.24\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{3}\right.$, $\mathcal{F}=8.8,2.4) ; 7.35\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{6}, \mathcal{F}=7.9\right) ; 7.43(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}_{1}, \mathcal{F}=2.4\right) ; 7.64\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{7}, \mathcal{F}=7.9\right) ; 7.67(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}_{5}, \mathcal{F}=7.9\right) ; 7.88\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{4}, \mathcal{F}=8.8\right) ; 9.22(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{N} H$). IR: $\mathrm{cm}^{-1} 3400,1735,1687,1601,1480$.
[(7-Methoxynaphth-2-yl)oxy]acetic acid (27). Yield: 90% as a white solid. $\mathrm{Mp}: 159-160^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. (Found M^{+}: 232.4, $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{4}$ requires 232.24). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right) ; 4.78$ (s, 2H, CH_{2}); 7.02 (dd, $1 \mathrm{H}, \mathrm{H}_{3}, \mathcal{F}=8.9,2.5$); 7.06 (dd, $\left.1 \mathrm{H}, \mathrm{H}_{6}, \mathcal{F}=8.9,2.5\right) ; 7.19\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{8}, \mathcal{F}=2.5\right)$; $7.24\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{1}, \mathcal{F}=2.5\right) ; 7.76$ (d, $\left.1 \mathrm{H}, \mathrm{H}_{5}, \mathcal{F}=8.9\right)$; 7.78 (d, $1 \mathrm{H}, \mathrm{H}_{4}, \mathcal{F}=8.9$). IR: $\mathrm{cm}^{-1} 1745,1627$, 1513, 1466.

4-Aminonaphtho[2,1-b]furan-3(2H)-one (29). A mixture of $26(1.00 \mathrm{~g}, 3.15 \mathrm{mmol})$ and polyphosphoric acid (10.00 g) was heated at 90° for 16 h under nitrogen. After cooling to ambient temperature, iced water was added and the product was extracted into diethyl ether ($3 \times 100 \mathrm{~mL}$). Organic phases were then washed with 2.5 M aqueous NaOH and water. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was evaporated in vacuum. Recrystallization from diisopropyl ether gave the desired product as an ochre solid. Yield: 45%. Mp: $156-157^{\circ} \mathrm{C}$ (diisopropyl ether). (Found M^{+}: 199.4, $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}_{2}$ requires 199.21). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 5.03$ ($\mathrm{s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right) ; 6.82\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{5}, \mathcal{F}=7.6\right) ; 6.94\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$; $7.11\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{7}, \mathcal{F}=7.6\right) ; 7.24$ (dd, $\left.1 \mathrm{H}, \mathrm{H}_{6}, \mathcal{F}=7.6\right)$; $7.35\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{9}, \mathcal{F}=9.1\right) ; 8.18\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{8}, \mathcal{F}=9.1\right)$. ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): 76.11 (C2); 111.21 (C5); 112.80 (C3a); 115.11 (C9); 115.85 (C7); 117.15 (C3b); 127.04 (C6); 135.80 (C7a); 142.27 (C8); 146.50 (C4); 175.83 (C9a); 199.78 (C3). IR: cm^{-1} 3412, 1671, 1610, 1585, 1455.

Method A

A mixture of naphtho[2,1-b]furan-2(3H)-one 3 ($0.30 \mathrm{~g}, 1.63 \mathrm{mmol}$), an aldehyde $(1.63 \mathrm{mmol})$ and para-toluenesulfonic acid $(0.15 \mathrm{~g}, 0.82 \mathrm{mmol})$, in anhydrous toluene (8 mL), under nitrogen, was stirred at $100^{\circ} \mathrm{C}$ for 20 h (in the case of products 13-17) or 3 h (in the case of products 18-21). After cooling to room temperature, the resulting precipitate was collected by filtration, washed with water and recrystallized from ethanol.
(3Z)-3-(3,5-Dibromo-4-hydroxybenzylidene)
naphtho[2,1-b]furan-2(3H)-one (13). Yield: 76% as a red solid. $\mathrm{Mp}>400^{\circ} \mathrm{C}\left(\mathrm{H}_{2} \mathrm{O}\right)$. (Found M^{+}: 444.8, $\mathrm{C}_{19} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{3}$ requires 446.09). ${ }^{1} \mathrm{H}$ NMR (DMSO$\left.d_{6}\right): \delta 7.44\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{9}, \mathcal{F}=8.7\right) ; 7.50\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{6}\right.$, $\mathcal{F}=7.2) ; 7.65\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{5}, \mathcal{F}=7.2\right) ; 7.81\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{8}\right.$, $\mathcal{F}=8.7) ; 8.00\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{7}, \mathcal{F}=8.1\right) ; 8.15\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right)$; $8.67\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{4}, \mathcal{F}=8.1\right) ; 8.80(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ph}-H) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): 111.48 (C9); 116.29 (C3); 121.70 (C3a); 122.98 (C4); 124.97 (C6); 127.49 (C3b); 128.85 (C8); 130.13 (C5); 130.84 (C7a); 132.17 (C7); 139.66 (C3'); 151.83 (C9a); 165.92 (C2); 111.00, 128.15, 136.25, 153.01 (C Ph). IR: $\mathrm{cm}^{-1} 3424,1739,1544,1467,806$.

(3Z)-3-[(3,5-Dimethyl-1H-pyrrol-2-yl)

methylene]naphtho[2,1-b]furan-2(3H)-one (14). Yield: 20% as a red solid. $\mathrm{Mp}: 165-166^{\circ} \mathrm{C}(\mathrm{EtOH})$. (Found M^{+}: 289.3, $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires 289.33). ${ }^{1} \mathrm{H} \mathrm{NMR}$ (DMSO- d_{6}): $\delta 2.43$ and $2.44\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right) ; 6.08$ (d, $1 \mathrm{H}, \operatorname{pyr}-H, \mathcal{F}=2.5) ; 7.37\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{9}, \mathcal{F}=8.8\right)$; 7.46 (ddd, $1 \mathrm{H}, \mathrm{H}_{6}, \mathcal{F}=7.0,1.2$); 7.63 (ddd, $1 \mathrm{H}, \mathrm{H}_{5}$, $\mathcal{F}=7.0,1.2) ; 7.72\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{8}, \mathcal{F}=8.8\right) ; 7.92(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}_{7}, \mathcal{F}=8.0\right) ; 8.06\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right) ; 8.33\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{4}\right.$, $\mathcal{F}=8.0) ; 12.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H) .{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}\right)$: 11.81, $13.83\left(2 \times \mathrm{CH}_{3}\right) ; 111.43$ (C9); 106.83 (C3); 117.98 (C3a); 122.40 (C4); 124.66 (C6); 127.14 (C3b); 127.11 (C8); 128.12 (C5); 131.05 (C7a); 128.17 (C7); 130.15 (C3'); 148.89 (C9a); 170.10 (C2); 114.00, 126.96, 136.03, 139.64 (C pyr). IR: $\mathrm{cm}^{-1} 3450,1715,1561,1448$.
(3Z)-3-(1H-Imidazol-4-ylmethylene) naphtho[2,1-b] furan-2(3H)-one (15). Yield: 40% as a yellow solid. $\mathrm{Mp}: 273-274^{\circ} \mathrm{C}$ (EtOH). (Found M^{+}: 263.0, $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 262.27). ${ }^{1} \mathrm{H}$ NMR (DMSO$\left.d_{6}\right): \delta 7.57\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{9}, \mathcal{F}=9.0\right) ; 7.60\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{6}\right.$, $\mathcal{F}=7.2) ; 7.79\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{5}, \mathcal{F}=7.2\right) ; 8.04\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{8}\right.$, $\mathcal{F}=9.0) ; 8.08\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3^{\prime}}\right) ; 8.10\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{7}, \mathcal{F}=8.2\right)$; $8.48\left(\mathrm{~s}, 2 \mathrm{H}\right.$, imid- H) ; $8.50\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{4}, \mathcal{F}=8.2\right) ; 12.8$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{N} H$). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): 111.64 (C9); 115.71 (C3); 116.44 (C3a); 122.43 (C4); 124.97 (C6); 127.31 (C3b); 128.71 (C8); 130.23 (C5);
130.94 (C7a); 130.91 (C7); 130.94 (C3'); 150.84 (C9a); 167.42 (C2); 126.23, 131.94, 139.43 (C imid). IR: $\mathrm{cm}^{-1} 3449,1740,1571,1457$.
(3Z)-3-[(1-Methyl-1H-imidazol-4-yl)methylene]naphtho [2,1-b]furan-2(3H)-one (16). Yield: 80% as a yellow solid. Mp : $249-250^{\circ} \mathrm{C}(\mathrm{EtOH})$. (Found M^{+}: 276.9, $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 276.29). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 7.56\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{9}, \mathfrak{F}=8.8\right) ; 7.58$ (dd, $1 \mathrm{H}, \mathrm{H}_{6}, \mathcal{F}=7.2$); 7.78 (dd, $1 \mathrm{H}, \mathrm{H}_{5}, \mathcal{F}=7.2$); 7.96 (s, $1 \mathrm{H}, \mathrm{H}_{3}$) ; $8.04\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{8}, \mathcal{F}=8.8\right) ; 8.10(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{H}_{7}, \mathcal{F}=8.2$); 8.36 and 8.82 ($2 \mathrm{~s}, 2 \mathrm{H}$, imid- H); 8.47 (d, $1 \mathrm{H}, \mathrm{H}_{4}, \mathcal{F}=8.2$). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): 33.85 $\left(\mathrm{CH}_{3}\right) ; 111.69$ (C9); 116.31 (C3); 116.55 (C3a); 122.23 (C4); 124.98 (C6); 127.38 (C3b); 128.91 (C8); 130.30 (C5); 131.01 (C7a); 130.89 (C7); 135.69 (C3'); 150.80 (C9a); 166.65 (C2); 129.05, 136.18, 139.96 (C imid). IR: $\mathrm{cm}^{-1} 1755,1583,1460$.
(3Z)-3-[(1-Methyl-1H-imidazol-5-yl) methylene] naphtho[2,1-b]furan-2(3H)-one (17). Yield: 40% as an orange solid. $\mathrm{Mp}: 213-214^{\circ} \mathrm{C}(\mathrm{EtOH})$. (Found M^{+}: 277.0, $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 276.29). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 4.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 7.56\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{9}\right.$, $\mathcal{F}=8.8$); 7.59 (ddd, $1 \mathrm{H}, \mathrm{H}_{6}, \mathcal{F}=7.0,1.2$); 7.77 (ddd, $\left.1 \mathrm{H}, \mathrm{H}_{5}, \mathfrak{F}=7.0,1.2\right) ; 8.05\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{8}, \mathfrak{F}=8.8\right) ; 8.13$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{3^{\prime}}$) $8.13\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{7}, \mathcal{F}=8.2\right) ; 8.15$ and 8.69 $\left(2 \mathrm{~s}, 2 \mathrm{H}\right.$, imid- H) ; $8.55\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{4}, \mathcal{F}=8.2\right) .{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}\right): 32.04\left(\mathrm{CH}_{3}\right) ; 111.86$ (C9); 116.80 (C3); 116.98 (C3a); 122.98 (C4); 125.22 (C6); 127.55 (C3b); 129.10 (C8); 130.45 (C5); 131.11 (C7a); 131.48 (C7); 139.47 (C3'); 151.14 (C9a); 166.42 (C2); 126.17, 133.10, 143.52 (C imid). IR: $\mathrm{cm}^{-1} 1762,1581,1458$.

(3Z)-3-(4-Oxo-1-benzopyran-3-ylmethylene)

naphtho[2,1-b]furan-2(3H)-one (18). Yield: 72% as an orange solid. $\mathrm{Mp}: 222-223^{\circ} \mathrm{C}(\mathrm{EtOH})$. (Found M^{+}: 338.9, $\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{O}_{4}$ requires 340.33). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.33\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{9}, \mathcal{F}=8.9\right) ; 7.50(\mathrm{dd}, 1 \mathrm{H}$, $\mathrm{H}_{6}, \mathcal{F}=7.6$); 7.53 (dd, 1 H , benzopy- $H, \mathcal{F}=7.0$); 7.57 (d, 1 H , benzopy- $H, \mathcal{F}=8.5$); $7.70\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{5}\right.$, $\mathfrak{f}=7.6) ; 7.76(\mathrm{dd}, 1 \mathrm{H}$, benzopy $-H, \mathfrak{f}=7.0) ; 7.88(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{H}_{8}, \mathcal{F}=8.9\right) ; 7.91\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{7}, \mathcal{F}=8.5\right) ; 8.33(\mathrm{~d}$, 1 H , benzopy- $H, \mathcal{F}=8.5) ; 8.47\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{4}, \mathcal{F}=8.5\right)$; $8.63\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right) ; 9.81\left(\mathrm{~s}, 1 \mathrm{H}\right.$, benzopy-H). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): 111.58 (C9); 115.52 (C3); 118.75 (C3a); 122.10 (C4); 125.14 (C6); 127.40 (C3b); 129.25 (C8); 130.22 (C5); 130.71 (C7a); 131.80 (C7); 132.75 (C3'); 152.02 (C9a); 165.95 (C2); $117.88,123.14,124.02,125.45,126.31,134.82$, 155.49, 159.37, 174.69 (C benzopy). IR: $\mathrm{cm}^{-1} 1767$, 1661, 1620, 1575, 1461.
(3Z)-3-(6-Methyl-4-oxo-1-benzopyran-3-
ylmethylene)naphtho[2,1-b]furan-2(3H)-one (19). Yield: 67% as a yellow solid. Mp: $262-263^{\circ} \mathrm{C}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. (Found M^{+}: 354.0, $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{O}_{4}$ requires 355.37). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; $7.34\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{9}, \mathcal{F}=8.9\right) ; 7.47$ (d, 1 H , benzopy- H, $\mathcal{F}=8.8) ; 7.51\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{6}, \mathcal{F}=7.2\right) ; 7.56(\mathrm{~d}, 1 \mathrm{H}$, benzopy- $H, \mathcal{F}=8.8) ; 7.71\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{5}, \mathcal{F}=7.2\right) ; 7.89$ (d, $\left.1 \mathrm{H}, \mathrm{H}_{8}, \mathcal{F}=8.9\right) ; 7.92\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{7}, \mathcal{F}=8.5\right) ; 8.11$ (br, 1 H , benzopy- H); 8.49 (d, $1 \mathrm{H}, \mathrm{H}_{4}, \mathcal{F}=8.5$); 8.65 (s, $1 \mathrm{H}, \mathrm{H}_{3^{\prime}}$); 9.78 ($\mathrm{s}, 1 \mathrm{H}$, benzopy- H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}-d_{6}\right): 21.06\left(\mathrm{CH}_{3}\right) ; 111.42$ (C9); 116.73 (C3); 118.23 (C3a); 122.50 (C4); 125.01 (C6); 128.18 (C3b); 129.02 (C8); 130.08 (C5); 131.20 (C7a); 131.82 (C7); 132.21 (C3'); 152.37 (C9a); 167.38 (C2); 118.29, 123.37, 123.47, 125.70, 135.54, 136.11, 154.31, 160.07, 176.01 (C chrom). IR: $\mathrm{cm}^{-1} 1759,1658,1620,1576,1481$.
(3Z)-3-(6-Chloro-4-oxo-1-benzopyran-3-
ylmethylene)naphtho[2,1-b]furan-2(3H)-one (20).
Yield: 71% as an orange solid. Mp: $286-287^{\circ} \mathrm{C}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. (Found M^{+}: 374.0, $\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{ClO}_{4}$ requires 375.83). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.36$ (d, $1 \mathrm{H}, \mathrm{H}_{9}$, $\mathcal{F}=8.8) ; 7.56(\mathrm{~d}, 1 \mathrm{H}$, benzopy- $H, \mathcal{F}=8.8) ; 7.53(\mathrm{dd}$, $\left.1 \mathrm{H}, \mathrm{H}_{6}, \mathcal{F}=7.4\right) ; 7.71(\mathrm{dd}, 1 \mathrm{H}$, benzopy- $H, \mathcal{F}=8.8$, 2.7); 7.73 (dd, $\left.1 \mathrm{H}, \mathrm{H}_{5}, \mathcal{F}=7.4\right) ; 7.91\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{8}\right.$, $\mathcal{F}=8.8) ; 7.94\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{7}, \mathcal{F}=8.5\right) ; 8.28(\mathrm{br}, 1 \mathrm{H}$, benzopy- H); $8.47\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{4}, \mathcal{F}=8.5\right) ; 8.56(\mathrm{~s}, 1 \mathrm{H}$, H_{3}) ; 9.75 ($\mathrm{s}, 1 \mathrm{H}$, benzopy- H). ${ }^{13} \mathrm{C}$ NMR (DMSOd_{6}): 110.43 (C9); 115.48 (C3); 117.46 (C3a); 121.41 (C4); 124.11 (C6); 127.16 (C3b); 128.15 (C8); 129.14 (C5); 131.00 (C7a); 129.72 (C7); 131.59 (C3'); 151.60 (C9a); 166.12 (C2); 119.27, 123.60, $123.89,124.76,130.21,133.52,153.34,158.94$, 175.42 (C benzopy). IR: cm^{-1} 1758, 1663, 1618, 1562, 1463, 807.
(3Z)-3-(6-Nitro-4-oxo-1-benzopyran-3-
ylmethylene) naphtho[2,1-b]furan-2(3H)-one (21). Yield: 42% as an orange solid. Mp: $289-290^{\circ} \mathrm{C}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. (Found $\mathrm{M}^{+}: 385.0, \mathrm{C}_{22} \mathrm{H}_{12} \mathrm{NO}_{6}$ requires 386.34). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.36\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{9}\right.$, $\mathcal{F}=8.9$); 7.54 (ddd, $1 \mathrm{H}, \mathrm{H}_{6}, \mathcal{F}=7.0,1.2$); 7.75 (d, 1 H , benzopy- $H, \mathcal{F}=9.1$); 7.75 (ddd, $1 \mathrm{H}, \mathrm{H}_{5}$, $\mathcal{F}=7.0,1.2) ; 7.94\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{7}, \mathfrak{F}=8.5\right) ; 7.95(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}_{8}, \mathcal{F}=8.9\right) ; 8.45\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{4}, \mathcal{F}=8.5\right) ; 8.51(\mathrm{~s}, 1 \mathrm{H}$, H_{3}) ; 8.59 (dd, 1H, benzopy- $H, \mathcal{F}=9.1,2.7$); $9.21(\mathrm{~d}$, 1 H , benzopy- $H, \mathcal{F}=2.7$); 9.75 (s, 1 H , benzopy- H). IR: $\mathrm{cm}^{-1} 1775,1658,1625,1576,1532,1462,1343$.
(3E)-3-(4-Oxo-1-benzopyran-3-
ylmethylene) benzo[b]furan-2(3H)-one (53). Yield: 50\% as a yellow solid. $\mathrm{Mp}: 177-178^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. (Found M^{+}: 288.8, $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{O}_{4}$ requires 290.27). ${ }^{1} \mathrm{H}$ NMR
$\left(\mathrm{CDCl}_{3}\right): \delta 6.75$ (ddd, $\left.1 \mathrm{H}, \mathrm{H}_{5}, \mathcal{F}=7.3,1.2\right) ; 6.83$ (dd, $\left.1 \mathrm{H}, \mathrm{H}_{7}, \mathcal{F}=7.8,1.5\right) ; 6.94\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{4}, \mathcal{J}=7.8\right.$, 1.5); 7.14 (ddd, $1 \mathrm{H}, \mathrm{H}_{6}, \mathcal{F}=7.3,1.2$); 7.45 (dd, 1 H , benzopy- $H, \mathcal{F}=7.3,1.8$); 7.47 (s, 1 H , benzopy- H); 7.50 (dd, 1 H , benzopy- $H, \mathcal{F}=8.5,1.8$); $7.70(\mathrm{~s}, 1 \mathrm{H}$, H_{3}); 7.74 (ddd, 1 H , benzopy $-H, \mathcal{F}=7.3,1.8$); 8.03 (dd, 1 H , benzopy- $H, \mathcal{F}=8.5,1.8$). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): 117.40 (C7); 121.00 (C5); 123.77 (C3a); 131.21 (C6); 131.43 (C3'); 131.76 (C4); 132.49 (C3); 156.48 (C7a); 168.49 (C2); 120.04, 120.72, 124.54, 126.90, 127.61, 136.21, 156.73, 157.02, 176.63 (C benzopy). IR: $\mathrm{cm}^{-1} 1719,1632$, 1614, 1563, 1468.

Method B

A mixture of naphtho[2,1-b]furan-3(2H)-one 28 $(0.30 \mathrm{~g}, 1.63 \mathrm{mmol})$ and an aldehyde $(1.63 \mathrm{mmol})$ in anhydrous pyridine (8 mL), under nitrogen, was heated at $90^{\circ} \mathrm{C}$ until a clear solution was formed. To this solution was added $25 \mu \mathrm{~L}$ of dry piperidine. The resultant solution was heated at $90^{\circ} \mathrm{C}$ for 2 h . After cooling to room temperature, the reaction mixture was then stirred at $0^{\circ} \mathrm{C}$ and acidified with 1 M HCl until complete precipitation. The resulting precipitate was collected by filtration, washed with water and recrystallized from ethanol.
(2Z)-2-(3,5-Dibromo-4-hydroxybenzylidene)
naphtho[2,1-b]furan-3(2H)-one (31). Yield: 85% as a ochre solid. Mp: $294-295^{\circ} \mathrm{C}(\mathrm{EtOH})$. (Found M^{+}: 446.6, $\mathrm{C}_{19} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{3}$ requires 446.09). ${ }^{1} \mathrm{H} \mathrm{NMR}$ (DMSO- d_{6}): $\delta 7.00\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right.$) ; 7.63 (dd, $1 \mathrm{H}, \mathrm{H}_{6}$, $\mathcal{F}=7.1) ; 7.81\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{5}, \mathcal{F}=7.1\right) ; 7.83\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{9}\right.$, $\mathcal{F}=9.0) ; 8.13\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{7}, \mathcal{F}=8.1\right) ; 8.27(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ph}-$ $H) ; 8.43$ (d, $1 \mathrm{H}, \mathrm{H}_{8}, \mathcal{F}=9.0$); 8.50 (br, $1 \mathrm{H}, \mathrm{OH}$); $8.72\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{4}, \mathcal{F}=8.1\right) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): 110.52 (C2'); 113.52 (C3a); 113.90 (C9); 122.84 (C4); 126.28 (C6); 128.69 (C3b); 129.55 (C7); 130.17 (C7a); 130.47 (C5); 139.90 (C8); 146.77 (C2); 167.72 (C9a); 183.44 (C3); 112.47, 126.75, $135.45,152.70$ (C Ph). IR: $\mathrm{cm}^{-1} 3418,1633,1579$, 1475, 809.

(2Z)-2-[(3,5-Dimethyl-1 H-pyrrol-2-yl)

methylene]naphtho[2,1-b]furan-3(2H)-one (32). Yield: 45% as a bright red solid. Mp: $169-170^{\circ} \mathrm{C}$ (EI). (Found M^{+}: 290.1, $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires 289.33). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.28$ and $2.42(2 \mathrm{~s}, 6 \mathrm{H}$, $\left.2 \times \mathrm{CH}_{3}\right) ; 6.14(\mathrm{~d}, 1 \mathrm{H}$, pyr- $H, \mathcal{F}=1.9) ; 7.63(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{H}_{9}, \mathcal{F}=8.9$); 7.60 (ddd, $1 \mathrm{H}, \mathrm{H}_{6}, \mathcal{F}=7.6,1.2$); 7.78 (ddd, $\left.1 \mathrm{H}, \mathrm{H}_{5}, \mathcal{F}=7.6,1.2\right) ; 8.28\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{8}\right.$, $\mathcal{F}=8.9) ; 8.09\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{7}, \mathcal{F}=8.2\right) ; 7.37\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}{ }^{\prime}\right)$; 8.92 (d, $1 \mathrm{H}, \mathrm{H}_{4}, \mathcal{F}=8.2$) ; 13.31 (br, $\left.1 \mathrm{H}, \mathrm{NH}\right) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $11.14,13.57\left(2 \times \mathrm{CH}_{3}\right) ; 113.19$ (C2'); 116.57 (C3a); 113.94 (C9); 122.50 (C4);
125.35 (C6); 129.81 (C3b); 129.03 (C7); 130.02 (C7a); 129.24 (C5); 137.18 (C8); 142.84 (C2); 163.89 (C9a); 179.04 (C3); 113.77, 125.30, 132.11, 136.40 (C pyr). IR: $\mathrm{cm}^{-1} 3424,1654,1584$.
(2Z)-2-(1H-Imidazol-4-ylmethylene) naphtho[2,1-b] furan-3(2H)-one (33). Yield: 68% as a yellow solid. $\mathrm{Mp}: \quad 259-260^{\circ} \mathrm{C}$ (EI). (Found M^{+}: 262.8, $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 262.27). ${ }^{1} \mathrm{H}$ NMR (DMSO$\left.d_{6}\right): \delta 7.01\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right.$) ; 7.62 (dd, $1 \mathrm{H}, \mathrm{H}_{6}, \mathcal{F}=7.1$); 7.76 (d, 1H, H9, $\mathcal{F}=9.0$); 7.81 (dd, $1 \mathrm{H}, \mathrm{H}_{5}, \mathcal{F}=7.1$); 7.95 and 7.97 ($2 \mathrm{~s}, 2 \mathrm{H}$, imid- H); 8.13 (d, $1 \mathrm{H}, \mathrm{H}_{7}$, $\mathcal{F}=8.1) ; 8.41\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{8}, \mathcal{F}=9.0\right) ; 8.75\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{4}\right.$, $\mathcal{F}=8.1) ; 12.79(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): 108.60 (C2'); 114.16 (C3a); 113.85 (C9); 122.79 (C4); 126.06 (C6); 128.84 (C3b); 129.48 (C7); 130.01 (C7a); 130.23 (C5); 139.31 (C8); 145.34 (C2); 166.96 (C9a); 182.88 (C3); 123.37, 134.73, 137.97 (C imid). IR: $\mathrm{cm}^{-1} 3410,1633,1573,1450$.

(2Z)-2-[(1-Methyl-1H-imidazol-4-yl)

methylene]naphtho[2,1-b]furan-3(2H)-one (34). Yield: 69% as a yellow solid. $\mathrm{Mp}: 282-283^{\circ} \mathrm{C}(\mathrm{EtOH})$. (Found M^{+}: 276.9, $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 276.29). ${ }^{1} \mathrm{H} \mathrm{NMR}$ (DMSO- d_{6}): $\delta 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 6.99\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right.$); 7.65 (dd, $1 \mathrm{H}, \mathrm{H}_{6}, \mathcal{F}=7.1$); 7.73 (d, $1 \mathrm{H}, \mathrm{H}_{9}, \mathcal{F}=9.0$); 7.83 (dd, $1 \mathrm{H}, \mathrm{H}_{5}, \mathcal{F}=7.1$); 8.15 (d, $1 \mathrm{H}, \mathrm{H}_{7}, \mathcal{F}=8.0$); 8.26 and $8.81\left(2 \mathrm{~s}, 2 \mathrm{H}\right.$, imid- H); $8.48\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{8}\right.$, $\mathcal{F}=9.0) ; 8.71\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{4}, \mathcal{F}=8.0\right) .{ }^{13} \mathrm{CNMR}$ (DMSO$\left.d_{6}\right): 35.23\left(\mathrm{CH}_{3}\right) ; 102.49(\mathrm{C} 2$ '); 113.49 (C3a); 113.61 (C9); 122.80 (C4); 126.36 (C6); 128.71 (C3b); 129.60 (C7); 130.18 (C7a); 130.60 (C5); 140.18 (C8); 146.86 (C2); 167.45 (C9a); 182.48 (C3); 126.62, 129.26, 138.94 (C imid). IR: $\mathrm{cm}^{-1} 1649,1581,1452$.
(2Z)-2-[(1-Methyl-1H-imidazol-5-yl)
methylene]naphtho[2,1-b]furan-3(2H)-one (35). Yield: 55% as a yellow solid. Mp: $240-241^{\circ} \mathrm{C}(\mathrm{EtOH})$. (Found M^{+}: 276.9, $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 276.29). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 3.94$ (s, 3H, CH_{3}); 7.00 (s, $1 \mathrm{H}, \mathrm{H}_{2}$) ; $7.62\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{6}, \mathcal{F}=7.3\right) ; 7.78\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{9}\right.$, $\mathcal{F}=9.1) ; 7.80\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{5}, \mathcal{F}=7.3\right) ; 7.95$ and 7.97 ($2 \mathrm{~s}, 2 \mathrm{H}$, imid- H); $8.12\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{7}, \mathcal{F}=8.2\right.$); 8.41 (d, $\left.1 \mathrm{H}, \mathrm{H}_{8}, \mathcal{F}=9.1\right) ; 8.74\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{4}, \mathcal{F}=8.2\right) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $31.62\left(\mathrm{CH}_{3}\right) ; 100.04\left(\mathrm{C} 2{ }^{\prime}\right)$; 113.93 (C3a); 113.68 (C9); 122.65 (C4); 125.98 (C6); 128.58 (C3b); 129.33 (C7); 129.93 (C7a); 130.13 (C5); 139.29 (C8); 145.67 (C2); 166.72 (C9a); 182.36 (C3); 126.02, 136.60, 141.99 (C imid). IR: $\mathrm{cm}^{-1} 1636,1579,1459$.

(2Z)-2-(4-Oxo-1-benzopyran-3-

ylmethylene) naphtho[2,1-b]furan-3(2H)-one (36). Yield: 85% as a yellow solid. Mp: $254-255^{\circ} \mathrm{C}$
(EtOH). (Found M^{+}: 339.0, $\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{O}_{4}$ requires 340.33). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.43\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{9}\right.$, $\mathcal{F}=8.9) ; 7.50\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{6}, \mathcal{F}=7.0\right) ; 7.46(\mathrm{dd}, 1 \mathrm{H}$, benzopy- $H, \mathcal{F}=7.0) ; 7.53(\mathrm{~d}, 1 \mathrm{H}$, benzopy- H, $\mathcal{F}=7.9$); 7.73 (dd, $1 \mathrm{H}, \mathrm{H}_{5}, \mathcal{F}=7.0$); 7.70 (dd, 1 H , benzopy- $H, \mathcal{F}=7.0) ; 8.14\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{8}, \mathcal{F}=8.9\right) ; 7.88$ (d, $\left.1 \mathrm{H}, \mathrm{H}_{7}, \mathcal{F}=7.9\right) ; 8.30(\mathrm{~d}, 1 \mathrm{H}$, benzopy- $H, \mathcal{F}=7.9)$; $8.86\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{4}, \mathcal{F}=7.9\right) ; 7.41\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2^{\prime}}\right) ; 9.08(\mathrm{~s}, 1 \mathrm{H}$, benzopy- H). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): 102.31 (C2'); 112.66 (C9); 114.36 (C3a); 123.75 (C4); 125.92 (C6); 128.61 (C7); 129.20 (C3b); 130.00 (C5); 130.12 (C7a); 138.94 (C8); 147.67 (C2); 167.34 (C9a); 183.39 (C3); 118.09, 118.28, 123.60, 125.82, 126.48, 134.13, 155.87, 158.77, 175.11 (C benzopy). IR: cm^{-1} 1702, 1658, 1567, 1462.
(2Z)-2-(6-Methyl-4-oxo-1-benzopyran-3-ylmethylene) naphtho[2,1-b]furan-3(2H)-one (37). Yield: 79% as a yellow solid. $\mathrm{Mp}: 268-269^{\circ} \mathrm{C}(\mathrm{EtOH})$. (Found M^{+}: 377.0, $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{O}_{4}$ requires 354.36). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 7.43\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{9}\right.$, $\mathcal{F}=9.0) ; 7.42(\mathrm{~d}, 1 \mathrm{H}$, benzopy- $H, \mathcal{F}=8.5) ; 7.52$ (ddd, $\left.1 \mathrm{H}, \mathrm{H}_{6}, \mathcal{F}=7.0,1.2\right) ; 7.53(\mathrm{~d}, 1 \mathrm{H}$, benzopy- H, $\mathcal{F}=8.5) ; 7.71$ (ddd, $\left.1 \mathrm{H}, \mathrm{H}_{5}, \mathcal{F}=7.0,1.2\right) ; 8.14$ (d, $\left.1 \mathrm{H}, \mathrm{H}_{8}, \mathfrak{F}=9.0\right) ; 7.89\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{7}, \mathfrak{F}=8.0\right) ; 8.09$ (br, 1 H , benzopy- H); $8.88\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{4}, \mathcal{F}=8.0\right) ; 7.44$ (s, $1 \mathrm{H}, \mathrm{H}_{2}$) ; $9.08\left(\mathrm{~s}, 1 \mathrm{H}\right.$, benzopy- H). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $20.99\left(\mathrm{CH}_{3}\right) ; 102.64$ (C2'); 112.68 (C9); 114.40 (C3a); 123.79 (C4); 125.92 (C6); 128.62 (C7); 129.23 (C3b); 130.00 (C5); 130.13 (C7a); 138.90 (C8); 147.59 (C2); 167.33 (C9a); 183.44 (C3); 117.88, 118.05, 123.25, 125.81, 135.38, 135.98, 154.18, 158.79, 175.24 (C benzopy). IR: $\mathrm{cm}^{-1} 1701,1655,1562,1481$.
(2Z)-2-(6-Chloro-4-oxo-1-benzopyran-3-ylmethylene) naphtho[2,1-b]furan-3(2H)-one (38). Yield: 76% as a yellow solid. $\mathrm{Mp}:>300^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.52\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{9}, \mathcal{F}=9.2\right) ; 7.46(\mathrm{~d}, 1 \mathrm{H}$, benzopy- $H, \mathcal{F}=8.8$); $7.57\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{6}, \mathcal{F}=7.2\right) ; 7.69$ (dd, 1 H , benzopy- $H, \mathcal{F}=8.8,2.4$); $7.75\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{5}\right.$, $\mathcal{F}=7.2) ; 8.18\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{8}, \mathcal{F}=9.2\right) ; 7.92\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{7}\right.$, $\mathfrak{f}=8.0) ; 8.30(\mathrm{~d}, 1 \mathrm{H}$, benzopy- $H, \mathcal{F}=2.4) ; 8.89(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{H}_{4}, \mathcal{F}=8.0\right) ; 7.41\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right) ; 9.12(\mathrm{~s}, 1 \mathrm{H}$, benzopy- H). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): 102.88 (C2'); 112.60 (C9); 114.37 (C3a); 123.84 (C4); 126.06 (C6); 128.66 (C7); 129.41 (C3b); 130.15 (C5); 130.17 (C7a); 139.08 (C8); 147.61 (C2); 166.89 (C9a); 184.05 (C3); 116.78, 120.03, 123.60, 125.95, 134.40, 140.62, 152.98, 158.68, 175.23 (C benzopy). IR: $\mathrm{cm}^{-1} 1695,1656,1579,1457,816$.

Method C

A mixture of 4-aminonaphtho[2,1-b]furan-3(2H)-one $29(0.30 \mathrm{~g}, 1.51 \mathrm{mmol})$ or 5-methoxynaphtho
[2,1-b]furan-3(2H)-one $30(0.30 \mathrm{~g}, 1.40 \mathrm{mmol})$ and an aldehyde (1.40 mmol) in anhydrous ethanol $(8 \mathrm{~mL})$, under nitrogen, was heated at $90^{\circ} \mathrm{C}$ until a clear solution was formed. To this solution was added dry piperidine (0.15 eq). The resultant solution was heated at $90^{\circ} \mathrm{C}$ for 3 h . After cooling, the resulting precipitate was collected by filtration and recrystallized from ethanol or another appropriate solvent.
(2Z)-4-Amino-2-(3,5-dibromo-4-hydroxybenzylidene) naphtho[2,1-b]furan-3(2H)-one (39). Yield: 48% as a brown solid. $\mathrm{Mp}: 246-248^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. (Found M^{+}: 461.0, $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{Br}_{2} \mathrm{NO}_{3}$ requires 461.10). ${ }^{1} \mathrm{H} \mathrm{NMR}$ (DMSO- d_{6}): $\delta 6.85\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{5}, \mathcal{F}=7.6\right) ; 7.02(\mathrm{~s}, 1 \mathrm{H}$, H_{2}) ; $7.17\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{7}, \mathcal{F}=7.6\right) ; 7.28\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{6}\right.$, $\mathcal{F}=7.6) ; 7.65\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{9}, \mathcal{F}=9.1\right) ; 8.24\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{8}\right.$, $\mathcal{F}=9.1) ; 8.25(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ph}-H) .{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}\right):$ 112.10 (C2'); 112.55 (C5); 113.22 (C9); 114.71 (C3a); 116.52 (C7); 117.28 (C3b); 127.21 (C6); 132.62 (C7a); 141.99 (C8); 146.24 (C2); 146.48 (C4); 167.82 (C9a); 183.51 (C3); 112.52, 125.95, 135.41, 153.31 (C Ph). IR: $\mathrm{cm}^{-1} 3308,1619,1582$, 1474, 823.
(2Z)-4-Amino-2-[(3,5-dimethyl-1H-pyrrol-2-yl) methylene]naphtho[2,1-b]furan-3(2H)-one (40). Yield: 20% as a red solid. $\mathrm{Mp}: 198-200^{\circ} \mathrm{C}(\mathrm{EtOH})$. (Found M^{+}: 304.1, $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 304.34). ${ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(\mathrm{DMSO}-d_{6}\right): \delta 2.29$ and $2.43\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right) ; 6.18$ (s, 1 H, pyr-H); $6.84\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{5}, \mathcal{F}=7.2\right) ; 7.15$ (d, $\left.1 \mathrm{H}, \mathrm{H}_{7}, \mathcal{F}=7.2\right) ; 7.28\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{6}, \mathcal{F}=7.2\right) ; 7.40(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{NH}$) ; 7.43 (s, $1 \mathrm{H}, \mathrm{H}_{2}$); 7.47 (d, $1 \mathrm{H}, \mathrm{H}_{9}$, $\mathfrak{f}=9.0) ; 8.10\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{8}, \mathcal{F}=9.0\right) ; 12.97(\mathrm{br}, 1 \mathrm{H}$, $\mathrm{N} H) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): 11.40, 13.90 ($2 \times \mathrm{CH}_{3}$); 112.30 (C2'); 116.54 (C3a); 114.45 (C9); 146.56 (C4); 126.69 (C6); 117.39 (C3b); 116.52 (C7); 132.11 (C7a); 112.90 (C5); 139.39 (C8); 142.01 (C2); 164.16 (C9a); 177.66 (C3); $115.05,124.64,133.85,137.71$ (C pyr). IR: cm^{-1} $3380,1633,1543,1446$.
(2Z)-4-Amino-2-(1H-imidazol-4-ylmethylene) naphtho[2,1-b]furan-3(2H)-one (41). Yield: 80% as a purple solid. Mp: $190-192^{\circ} \mathrm{C}$ (acetone). (Found M^{+}: 277.0, $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires 277.28). ${ }^{1} \mathrm{H} \mathrm{NMR}$ (DMSO- d_{6}): $\delta 6.83\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{5}, \mathcal{F}=7.0\right) ; 7.05$ and $7.14(2 \mathrm{~s}, 2 \mathrm{H}, \operatorname{imid}-H) ; 7.15\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right)$; $7.15(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}_{7}, \mathcal{F}=7.0\right) ; 7.28\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{6}, \mathcal{F}=7.0\right) ; 7.60(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}_{9}, \mathcal{F}=9.0\right) ; 7.97\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right) ; 8.24\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{8}\right.$, $\mathcal{F}=9.0) ; 12.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}\right):$ 109.98 (C2'); 115.27 (C3a); 113.19 (C9); 146.52 (C4); 127.04 (C6); 117.43 (C3b); 116.38 (C7); 132.47 (C7a); 112.29 (C5); 141.43 (C8); 144.94 (C2); 167.14 (C9a); 182.96 (C3); 123.73, 134.01, 137.62 (C imid). IR: $\mathrm{cm}^{-1} 3328,1616,1532,1449$.
(2Z)-4-Amino-2-[(1-methyl-1H-imidazol-4-yl) methylene]naphtho[2,1-b]furan-3(2H)-one (42). Yield: 60% as a purple solid. $\mathrm{Mp}: 228-229^{\circ} \mathrm{C}$ (acetone). (Found M^{+}: 291.3, $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires 291.304). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 6.83$ (d, $\left.1 \mathrm{H}, \mathrm{H}_{5}, \mathcal{F}=8.0\right) ; 6.96\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right)$) $7.15\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{7}\right.$, $\mathcal{F}=8.0) ; 7.16\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right) ; 7.28\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{6}\right.$, $\mathcal{F}=8.0) ; 7.60\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{9}, \mathcal{F}=9.0\right) ; 7.87$ and $8.04(2 \mathrm{~s}$, 2 H , imid- H) ; 8.24 (d, $1 \mathrm{H}, \mathrm{H}_{8}, \mathcal{F}=9.0$). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $33.41\left(\mathrm{CH}_{3}\right) ; 109.51$ (C2'); 114.92 (C3a); 112.90 (C9); 146.61 (C4); 127.19 (C6); 117.06 (C3b); 116.35 (C7); 132.19 (C7a); 112.16 (C5); 141.35 (C8); 144.84 (C2); 167.35 (C9a); 182.79 (C3); 126.86, 133.43, 140.14 (C imid). IR: $\mathrm{cm}^{-1} 3318,1614,1531,1458$.
(2Z)-4-Amino-2-[(1-methyl-1 H-imidazol-5-yl) methylene]naphtho[2,1-b]furan-3(2H)-one (43). Yield: 30% as a brown solid. Mp: $137-139^{\circ} \mathrm{C}(\mathrm{EtOH})$. (Found M^{+}: 291.4, $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires 291.304). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 3.86$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$); 6.83 (d, $\left.1 \mathrm{H}, \mathrm{H}_{5}, \mathcal{F}=7.6\right) ; 7.05\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right.$) ; $7.15\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{7}\right.$, $\mathcal{F}=7.6) ; 7.15$ (s, 2H, NH_{2}); 7.28 (dd, $1 \mathrm{H}, \mathrm{H}_{6}$, $\mathcal{F}=7.6) ; 7.64\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{9}, \mathcal{F}=8.9\right) ; 7.96$ and $7.99(2 \mathrm{~s}$, 2 H , imid- H); 8.25 (d, $1 \mathrm{H}, \mathrm{H}_{8}, \mathcal{F}=8.9$). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $31.65\left(\mathrm{CH}_{3}\right) ; 101.60$ (C2'); 115.22 (C3a); 113.23 (C9); 146.49 (C4); 127.15 (C6); 117.36 (C3b); 116.48 (C7); 132.59 (C7a); 112.40 (C5); 141.66 (C8); 145.45 (C2); 167.11 (C9a); 182.65 (C3); 127.15, 136.92, 141.66 (C imid). IR: $\mathrm{cm}^{-1} 3360,1619,1577,1459$.
(2Z)-4-Amino-2-(4-Oxo-1-benzopyran-3-ylmethylene) naphtho[2,1-b]furan-3(2H)-one (44). Yield: 55\% as a brown solid. $\mathrm{Mp}: 265-266^{\circ} \mathrm{C}$ (acetone). (Found M^{+}: 354.9, $\mathrm{C}_{22} \mathrm{H}_{13} \mathrm{NO}_{4}$ requires 355.35). ${ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(\mathrm{DMSO}-d_{6}\right): \delta 6.79\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{5}, \mathcal{F}=7.6\right) ; 6.99$ (br, $\left.2 \mathrm{H}, \mathrm{NH}_{2}\right) ; 7.13\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{7}, \mathcal{F}=7.6\right) ; 7.27(\mathrm{dd}, 1 \mathrm{H}$, $\left.\mathrm{H}_{6}, \mathcal{F}=7.6\right) ; 7.31\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{9}, \mathcal{F}=9.0\right) ; 7.44(\mathrm{~s}, 1 \mathrm{H}$, H_{2}); 7.47 (ddd, 1 H , benzopy- $H, \mathcal{F}=7.8,1.5$); 7.54 (dd, 1 H , benzopy- $H, \mathcal{F}=7.8,1.5$); 7.74 (ddd, 1 H , benzopy- $H, \mathcal{F}=7.8,1.5) ; 8.06\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{8}, \mathcal{F}=9.0\right)$; 8.31 (dd, 1 H , benzopy- $H, \mathcal{F}=7.8,1.5) ; 9.07(\mathrm{~s}, 1 \mathrm{H}$, benzopy- H). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): 103.20 (C2'); 113.19 (C9); 114.63 (C3a); 147.00 (C4); 127.33 (C6); 116.59 (C7); 116.99 (C3b); 112.68 (C5); 135.20 (C7a); 142.48 (C8); 146.48 (C2); 168.04 (C9a); 183.41 (C3); 117.21, 118.97, 122.98, 125.81, 126.56, 132.69, 155.68, 160.17, 174.59 (C benzopy). IR: $\mathrm{cm}^{-1} 3415,1644,1611,1561,1462$.
(2Z)-2-(3,5-Dibromo-4-hydroxybenzylidene)-5-methoxynaphtho[2,1-b]furan-3(2H)-one (45). Yield: 50% as a yellow solid. $\mathrm{Mp}: 278-280^{\circ} \mathrm{C}$ (acetone). (Found M^{+}: 474.2, $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{O}_{4}$ requires 476.11).

Scheme 1. Preparation of 3-(arylmethylene)naphtho[2,1-b]furan-2(3H)-ones 13-21. (a) Glyoxal, $30^{\circ} \mathrm{C}, 80 \%$. (b) $3 \mathrm{M} \mathrm{HCl} / \mathrm{CHCl}_{3}, 50^{\circ} \mathrm{C}$, 85%. (c) Method A: PTSA, toluene, $90^{\circ} \mathrm{C}, 20-80 \%$.
${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) : $\delta 3.97$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$); 6.80 (s , $1 \mathrm{H}, \mathrm{H}_{2}$) ; $7.21\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{6}, \mathcal{F}=8.8,2.7\right) ; 7.56(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}_{9}, \mathcal{F}=9.1\right) ; 8.00\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{7}, \mathcal{F}=8.8\right) ; 8.04(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{Ph}-H) ; 8.20\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{8}, \mathcal{F}=9.1\right) ; 8.25\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{4}\right.$, $\mathcal{F}=2.7) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}-d_{6}\right): 55.52\left(\mathrm{CH}_{3} \mathrm{O}\right)$; 102.35 (C4); 110.65 (C9); 115.22 (C2’); 116.07 (C3a); 116.95 (C6); 124.83 (C7a); 130.74 (C3b); 130.74 (C7); 136.82 (C8); 142.74 (C2); 160.38 (C5);
165.08 (C9a); 181.01 (C3); 112.97, 126.98, 135.87, 153.10 (C Ph). IR: $\mathrm{cm}^{-1} 1626,1562,1469,831$.
(2Z)-2-[(3,5-Dimethyl-1H-pyrrol-2-yl) methylene]-5-methoxynaphtho[2,1-b]furan-3(2H)-one (46). Yield: 40% as a red solid. Mp: $185-187^{\circ} \mathrm{C}(\mathrm{EtOH})$. (Found M^{+}: 319.0, $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 319.35).

Scheme 2. Preparation of 2-(arylmethylene)naphtho[2,1-b]furan-3(2H)-ones 31-50. (a) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{THF} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1.4), reflux, 93%. (b) (1) $5,7 \mathrm{M} \mathrm{NaOH}$, (2) $\mathrm{BrCH}_{2} \mathrm{COOH} / \mathrm{THF}$, reflux, $82-90 \%$. (c) (1) $\mathrm{SOCl}_{2}, \mathrm{DMF}$ cat., (2) $\mathrm{AlCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ then reflux, $80-90 \%$. (d) PPA , $90^{\circ} \mathrm{C}, 45 \%$. (e) $\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{MeSO}_{3} \mathrm{H}, 40^{\circ} \mathrm{C}, 40 \%$. (f) Method B: piperidine, pyridine, $90^{\circ} \mathrm{C}$; Method C: piperidine, ethanol, $90^{\circ} \mathrm{C}, 20-85 \%$.

Scheme 3. Synthesis of 3-(4-oxo-1-benzopyran-3-ylmethylene)benzofuran-2(3H)-one 53. (a) PTSA, xylene, reflux. (b) Method A: PTSA, toluene, $90^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.29$ and $2.44(2 \mathrm{~s}, 6 \mathrm{H}$, $\left.2 \times \mathrm{CH}_{3}\right) ; 4.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right) ; 6.14(\mathrm{~s}, 1 \mathrm{H}$, pyr-H); 7.23 (dd, $1 \mathrm{H}, \mathrm{H}_{6}, \mathcal{F}=9.0,2.0$); 7.37 (s, $1 \mathrm{H}, \mathrm{H}_{2}$); 7.45 (d, $1 \mathrm{H}, \mathrm{H}_{9}, \mathcal{F}=9.0$); 8.04 (d, $1 \mathrm{H}, \mathrm{H}_{7}, \mathcal{F}=9.0$); 8.28 (d, $1 \mathrm{H}, \mathrm{H}_{8}, \mathcal{F}=9.0$); 8.34 (d, $1 \mathrm{H}, \mathrm{H}_{4}, \mathcal{F}=2.0$); 13.19 (br, $1 \mathrm{H}, \mathrm{N} H) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): 11.66, $14.14\left(2 \times \mathrm{CH}_{3}\right) ; 55.93\left(\mathrm{CH}_{3} \mathrm{O}\right) ; 102.79(\mathrm{C} 4)$; 110.61 (C9); 113.90 (C2'); 115.10 (C3a); 117.24 (C6); 124.73 (C7a); 130.71 (C3b); 131.24 (C7); 137.58 (C8); 143.11 (C2); 160.85 (C5); 164.72 (C9a); 179.59 (C3); 114.10, 124.79, 132.38, 136.43 (C pyr). IR: $\mathrm{cm}^{-1} 3449,1626,1590,1470$.
(2Z)-2-(1H-Imidazol-4-ylmethylene)-5-methoxynaphtho[2,1-b]furan-3(2H)-one (47). Yield: 85% as a yellow solid. Mp: $251-252^{\circ} \mathrm{C}$ (EtOH). (Found M^{+}: 292.3, $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires 292.29). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 4.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right) ; 7.03(\mathrm{~s}, 1 \mathrm{H}$, H_{2}) ; $7.18\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{6}, \mathcal{F}=8.8,2.4\right) ; 7.41\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{9}\right.$, $\mathcal{F}=8.8) ; 7.89\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{7}, \mathcal{F}=8.8\right) ; 7.90(2 \mathrm{~s}, 2 \mathrm{H}$, imid$H) ; 8.19\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{8}, \mathcal{F}=8.8\right) ; 8.20\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{4}\right.$, $\mathcal{F}=2.4) .{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}\right): 55.54\left(\mathrm{CH}_{3} \mathrm{O}\right)$; 102.16 (C4); 107.83 (C2'); 110.45 (C9); 113.35 (C3a); 117.40 (C6); 124.98 (C7a); 130.62 (C3b); 130.97 (C7); 138.81 (C8); 145.29 (C2); 160.88 (C5); 167.11 (C9a); 182.68 (C3); 122.79, 133.50, 137.79 (C imid). IR: $\mathrm{cm}^{-1} 3449,1629,1579,1473$.
(2Z)-2-[(1-Methyl-1H-imidazol-4-yl)methylene]-5-methoxynaphtho[2,1-b]furan-3(2H)-one (48). Yield:
80% as a yellow solid. $\mathrm{Mp}: 212-213^{\circ} \mathrm{C}(\mathrm{EtOH})$. (Found M^{+}: 306.6, $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 306.32). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 3.81$ (s, 3H, CH_{3}); 3.93 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$); 6.86 (s, $1 \mathrm{H}, \mathrm{H}_{2}$); 7.27 (dd, $1 \mathrm{H}, \mathrm{H}_{6}$, $\mathcal{F}=9.0,2.4) ; 7.52\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{9}, \mathcal{F}=8.9\right) ; 8.03(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{H}_{7}, \mathcal{F}=9.0\right) ; 8.15\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{4}, \mathcal{F}=2.4\right) ; 7.85$ and $8.06\left(2 \mathrm{~s}, 2 \mathrm{H}\right.$, imid- H); $8.32\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{8}\right.$, $\mathcal{F}=8.9) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}-d_{6}\right): 33.61 \quad\left(\mathrm{CH}_{3}\right)$; $55.60\left(\mathrm{CH}_{3} \mathrm{O}\right) ; 102.20(\mathrm{C} 4) ; 107.73$ (C2'); 110.41 (C9); 113.36 (C3a); 117.49 (C6); 125.03 (C7a); 130.66 (C3b); 131.06 (C7); 138.96 (C8); 145.37 (C2); 160.97 (C5); 167.15 (C9a); 182.75 (C3); $126.75,133.79,140.16$ (C imid). IR: $\mathrm{cm}^{-1} 1630$, 1582, 1472.
(2Z)-2-[(1-Methyl-1H-imidazol-5-yl)methylene]-5-methoxynaphtho[2,1-b]furan-3(2H)-one (49). Yield: 80% as a yellow solid. Mp: $247-249^{\circ} \mathrm{C}(\mathrm{EtOH})$. (Found M^{+}: 306.6, $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires 306.32). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 3.98$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$); 3.86 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$); $6.96\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right.$) ; 7.27 (dd, $1 \mathrm{H}, \mathrm{H}_{6}$, $\mathcal{F}=9.0,2.4) ; 7.60\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{9}, \mathcal{F}=8.9\right) ; 7.90$ and 7.92 ($2 \mathrm{~s}, 2 \mathrm{H}$, imid- H); 8.05 (d, $1 \mathrm{H}, \mathrm{H}_{7}, \mathcal{F}=9.0$); $8.34\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{8}, \mathcal{F}=8.9\right) ; 8.15\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{4}, \mathcal{F}=2.4\right)$. ${ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}\right): 31.62\left(\mathrm{CH}_{3}\right) ; 55.63$ $\left(\mathrm{CH}_{3} \mathrm{O}\right) ; 99.50$ (C2'); 102.36 (C4); 110.57 (C9); 113.28 (C3a); 117.45 (C6); 125.17 (C7a); 130.57 (C3b); 131.15 (C7); 139.10 (C8); 145.79 (C2); 161.02 (C5); 167.10 (C9a); 182.12 (C3); 125.85, 136.35, 141.81 (C imid). IR: $\mathrm{cm}^{-1} 1628,1582$, 1473.

Scheme 4. Synthesis of 2-(4-oxo-1-benzopyran-3-ylmethylene)benzofuran-3(2H)-one 55. Method C: piperidine, ethanol, $90^{\circ} \mathrm{C}$.

Figure 3. Determination of the Z configuration by ${ }^{3} \mathcal{f}(\mathrm{C}, \mathrm{H})$ vicinal couplings.

(2Z)-2-(4-Oxo-1-benzopyran-3-ylmethylene)-5-

 methoxynaphtho[2,1-b]furan-3(2H)-one (50). Yield: 80% as a yellow solid. Mp: $282-284^{\circ} \mathrm{C}$ (acetone). (Found M^{+}: $369.7, \mathrm{C}_{23} \mathrm{H}_{14} \mathrm{O}_{5}$ requires 370.35). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 3.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right) ; 7.11(\mathrm{~s}, 1 \mathrm{H}$, H_{2}) ; 7.27 (dd, $\left.1 \mathrm{H}, \mathrm{H}_{6}, \mathcal{F}=9.1,2.4\right) ; 7.59\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{9}\right.$, $\mathcal{F}=8.9$); 7.63 (dd, 1 H , benzopy- $H, \mathcal{F}=7.6$); 7.81 (d, 1 H , benzopy- $H, \mathcal{F}=7.6$); 7.95 (dd, 1 H , benzopy$H, \mathcal{F}=7.6) ; 8.06\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{7}, \mathcal{F}=9.1\right) ; 8.13(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}_{4}, \mathcal{F}=2.4\right) ; 8.22(\mathrm{~d}, 1 \mathrm{H}$, benzopy- $H, \mathcal{F}=7.6) ; 8.39$ (d, $1 \mathrm{H}, \mathrm{H}_{8}, \mathcal{F}=8.9$); 9.35 (s, 1H, benzopy-H). IR: $\mathrm{cm}^{-1} 1651,1624,1581,1466$.
(2Z)-2-(4-Oxo-1-benzopyran-3-ylmethylene)

benzofuran-3(2H)-one (55). Yield: 45% as a yellow solid. Mp : $234-235^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. (Found M^{+}: 290.1, $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{O}_{4}$ requires 290.27). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 7.25 (ddd, $1 \mathrm{H}, \mathrm{H}_{5}, \mathcal{F}=7.6,1.2$); 7.31 (dd, $1 \mathrm{H}, \mathrm{H}_{7}$, $\mathcal{F}=8.0,1.2) ; 7.36\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right) ; 7.46$ (ddd, 1 H , benzopy- $H, \mathcal{F}=7.6,1.6) ; 7.52$ (dd, 1 H , benzopy- H, $\mathfrak{F}=8.0,1.6) ; 7.68$ (ddd, $1 \mathrm{H}, \mathrm{H}_{6}, \mathcal{F}=7.6,1.2$); 7.72 (ddd, 1 H , benzopy- $H, \mathcal{F}=7.6,1.6$); 7.81 (dd, 1 H , $\left.\mathrm{H}_{4}, \mathcal{F}=8.0,1.2\right) ; 8.30(\mathrm{dd}, 1 \mathrm{H}$, benzopy- $H, \mathcal{F}=8.0$, 1.6); 9.08 ($\mathrm{s}, 1 \mathrm{H}$, benzopy- H). ${ }^{13} \mathrm{C}$ NMR (DMSO$\left.d_{6}\right): 102.23$ (C2'); 112.76 (C7); 121.73 (C3a); 123.83 (C5); 124.85 (C4); 136.94 (C6); 147.14 (C2); 165.57 (C7a); 183.58 (C3); 118.10, 118.29, 123.59, 125.85,
$126.50,134.16,155.89,158.78,175.14$ (C benzopy). IR: $\mathrm{cm}^{-1} 1703,1653,1557,1462$.

Pharmacology

MTT cytotoxicity assay. The murine L1210 leukemia cell line was maintained in RPMI 1640 medium (Gibco) supplemented with 10% foetal calf serum, 2 mM L-glutamine, $100 \mathrm{U} / \mathrm{mL}$ penicillin, $100 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin and 10 mM Hepes buffer (pH 7.4). Cytotoxicity was measured by the microculture tetrazolium assay [6]. Briefly, L1210 cells were exposed to graded concentrations of drugs for 48 h (4 doubling times). Results are expressed as IC_{50}, the concentration which reduced by 50% the optical density of treated cells with respect to the density of untreated cells.

SRC kinase inhibition. Inhibitors were diluted on a robotic Tecan Evo150 platform. The kinase assay was performed with $4 \mu \mathrm{~L}$ of diluted inhibitor (10% DMSO), $10 \mu \mathrm{~L}$ of kinase assay buffer $4 \times$ concentrated ($80 \mathrm{mM} \mathrm{MgCl} 2_{2}-200 \mathrm{mM}$ Hepes 0.4 mM EDTA - 2 mM dTT), $10 \mu \mathrm{~L}$ substrate peptide (KVEKIGEGYYGVVYK - 370 nM) and $6 \mu \mathrm{~L}$ Src kinase (stock GTP purified diluted with $1 \times$ kinase assay buffer to 200 nM). $10 \mu \mathrm{~L}$ co-substrate ($40 \mu \mathrm{M}$ ATP with $0.2 \mu \mathrm{Ci} \mathrm{P}^{33}-\gamma$-ATP) was added with a robotic Precision 2000 (Biotek) platform. The assay was incubated for 20 min at $30^{\circ} \mathrm{C}$ then stopped by adding $200 \mu \mathrm{~L} 0.85 \%$ ortho-phosphoric acid, then transferred to a phosphocellulose filter microplate (Whatman - P81). Three washes were performed with $200 \mu \mathrm{~L} 0.85 \%$ ortho-phosphoric acid and the filter plate was dried with $200 \mu \mathrm{~L}$ acetone. The remaining activity was measured on a topcount with $25 \mu \mathrm{~L}$ Scintillation solution (Packard Ultima Gold).

55

35

Figure 4. Views of 55 and 35 with our numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Results and discussion

Chemistry

The methylenenaphthofuranones 13-21 and 31-50 were prepared by a Knoevenagel reaction, condensing the formyl derivatives 4-12 with the naphthofuranones $\mathbf{3}$ or 28-30. In the case of naphthofuran-2-(3H)-ones, this aldolization-crotonization was realized under acidic conditions (method A) [7]. The methylene-naphthofuran-3-($2 H$)-ones 31-50 were obtained in more satisfactory yields under basic catalysis (method B or C) [8,9]. Naphthofuran-2-(3H)-one 3 was synthesized by condensation of glyoxal with 2-naphthol, in basic medium, according to the method described by Kito (Scheme 1) [10].

The regioselective cyclization of the naphthoxyacetic acids 25-27 obtained by alkylation [11] of the corresponding 2 -naphthols, afforded the naphtho-furan-3(2H)-ones 28-30 (Scheme 2) [12]. Three methods of cyclization were tested: (i) Friedel-Crafts reaction in presence of AlCl_{3} [12], (ii) heating at $90^{\circ} \mathrm{C}$ in polyphosphoric acid and (iii) under Eaton conditions, in presence of phosphorus pentoxide and methanesulfonic acid [13].

To obtain the 4-aminonaphthofuran-3(2H)-one 26 in a satisfactory yield, Boc- protection of the amino group was necessary [14].

The methylenebenzofuranones 53 and 55 were also prepared by a Knoevenagel condensation, starting from the benzofuranones 52 [15] and 54, respectively (Schemes 3 and 4).

In all cases this Knoevenagel reaction led to a unique stereoisomer. In the naphthofuran-2(3H)ones series, the stereochemistry of these α, β-unsaturated lactones was determined by vicinal C, H spin coupling constants. The use of ${ }^{13} \mathrm{C}$ NMR ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ coupling constants of the ketonic carbon of the target compounds 13-21 and the β-ethylenic proton afforded the results shown in Figure 3: the coupling constant was located between 12 and 15 Hz , a value that corresponds to the Z isomers, as previously
evidenced by Kingsbury and Letcher's works [16,17]. According to the precedent work [18], the coupling constant of the E isomers was about $6-8 \mathrm{~Hz}$.

For the naphthofuran-3(2H)-ones the same consideration was not possible; nevertheless an X-ray analysis allowed the stereochemistry assigment of these compounds.

The 3D spatial structures of compounds 55 and 35 were established by X-ray crystallography [19] indicating the (Z)-isomerism of the methylene double bond in the solid state (Figure 4). In 35 the system was found to be quite planar, e.g. $\mathrm{C}(8)$ deviates by $0.0037(1) \AA$ from the least-square plane defined by all the atoms, whereas in compound 55 the angle between the least-squares planes of the benzofuranone and benzopyranone moieties was approximately $4.93(2)^{\circ}$. The lengths of $C(8)-C(11)$ and $C(12)-C(15)$ bonds in 55 and 35, 1.317(5) and $1.345(5) \AA$ respectively, corresponded to those typically observed for the $\mathrm{C}=\mathrm{C}$ double bonds [20], while those of $\mathrm{C}(11)-$ $\mathrm{C}(12)$ (compound 55) and $\mathrm{C}(15)-\mathrm{C}(16)$ (compound 35) single bonds were observed at $1.452(5)$ and $1.434(5) \AA$, as logically expected.

Pharmacology

The cytotoxic activities of most of the studied compounds were evaluated in vitro on murine L1210 cells. IC_{50} values are reported in Tables I and II.

Comparison between the cytotoxic activities observed in compounds 18 and 53 on the one hand and 36 and 55 on the other hand brings to the fore the favourable effect induced by replacement of the benzofuranone core by a naphthofuranone one; moreover a 5 -fold increase of activity was observed when the ketonic group was in position-3 in the latter series, with IC_{50} values of 8.6 and $1.6 \mu \mathrm{M}$, respectively for 18 and 36. As far as the pharmacomodulation of the 3-naphthofuranone core (by introduction of an amino or a methoxy group at C^{4} or C^{5}) is concerned, although only one congener was tested in each sub-series, it seems to lead to more active

Table I. Pharmacological evaluation of 2-(arylmethylene)naphtho[2,1-b]furan-2(3H)-ones 13-21 and benzofuran-2($3 H$)-one $\mathbf{5 3}$.

N°	Ar	Method A Reaction time	Yield (\%)	$\mathrm{IC}_{50}(\mu \mathrm{M}) \mathrm{L} 1210$	SRC \% inhibition	
					$10 \mu \mathrm{M}$	$1 \mu \mathrm{M}$
13	3,5-dibromo-4-hydroxyphenyl	20 h	76	>10	19.8	0
14	3,5-dimethylpyrrol-2-yl	36 h	20	$n d^{\text {a }}$	8.6	$n d^{\text {a }}$
15	imidazol-4-yl	17 h	40	>10	20	3.2
16	1-methylimidazol-4-yl	20 h	80	44.7	2.6	3.7
17	1-methylimidazol-5-yl	18 h	40	45	-42.9	-9.4
18	4-oxo-1-benzopyran-3-yl	1 h	72	8.6	-2.7	1
19	6-methyl-4-oxo-1-benzopyran-3-yl	3 h	67	ins ${ }^{\text {b }}$	6.3	$n d^{\text {a }}$
20	6-chloro-4-oxo-1-benzopyran-3-yl	3 h	71	ins ${ }^{\text {b }}$	2.1	$n d^{\text {a }}$
21	6-nitro-4-oxo-1-benzopyran-3-yl	3 h	42	ins ${ }^{\text {b }}$	7.35	$n d^{\text {a }}$
53	3-(4-oxo-1-benzopyran-3-ylmethylene) benzo[b]furan-2(3H)-one			45.3	3.43	$n d^{\text {a }}$

[^0]Table II. Pharmacological evaluation of 2-(arylmethylene)naphtho[2,1-b]furan-3(2H)-ones and benzofuran-3(2H)-one 55 .

N°	Ar	R	Method	Reaction time	Yield (\%)	$\mathrm{IC}_{50}(\mu \mathrm{M}) \mathrm{L} 1210$	SRC \% inhibition	
							$10 \mu \mathrm{M}$	$1 \mu \mathrm{M}$
31	3,5-dibromo-4-hydroxyphenyl	H	B	1 h	85	>10	26.1	1.8
32	3,5-dimethylpyrrol-2-yl	H	B	2.5 h	45	>10	2.5	-1.8
33	imidazol-4-yl	H	B	1.5 h	68	>10	16.8	-2.9
34	1-methylimidazol-4-yl	H	B	1.5 h	69	39.2	8.7	-4.3
35	1-methylimidazol-5-yl	H	B	2 h	55	15.3	23	$n d^{\text {a }}$
36	4-oxo-1-benzopyran-3-yl	H	B	1 h	85	1.6	-37.7	11.3
37	6-methyl-4-oxo-1-benzopyran-3-yl	H	B	5 h	79	>100	-39.3	1.4
38	6-chloro-4-oxo-1-benzopyran-3-yl	H	B	4 h	76	ins ${ }^{\text {b }}$	1	$n d^{\text {a }}$
39	3,5-dibromo-4-hydroxyphenyl	$4-\mathrm{NH}_{2}$	C	3 h	48	9.5	38.2	$n d^{\text {a }}$
41	imidazol-4-yl	$4-\mathrm{NH}_{2}$	C	4 h	80	$n d^{\text {a }}$	12.5	$n d^{\text {a }}$
42	1-methylimidazol-4-yl	$4-\mathrm{NH}_{2}$	C	4 h	60	$n d^{\text {a }}$	3.5	$n d^{\text {a }}$
45	3,5-dibromo-4-hydroxyphenyl	$5-\mathrm{CH}_{3} \mathrm{O}$	C	3 h	50	$n d^{\text {a }}$	6.75	$n d^{\text {a }}$
46	3,5-dimethylpyrrol-2-yl	$5-\mathrm{CH}_{3} \mathrm{O}$	C	4 h	40	$n d^{\text {a }}$	7.1	$n d^{\text {a }}$
47	imidazol-4-yl	$5-\mathrm{CH}_{3} \mathrm{O}$	C	6 h	85	7.8	10.8	$n d^{\text {a }}$
48	1-methylimidazol-4-yl	$5-\mathrm{CH}_{3} \mathrm{O}$	C	3 h	80	$n d^{\text {a }}$	9.9	$n d^{\text {a }}$
49	1-methylimidazol-5-yl	$5-\mathrm{CH}_{3} \mathrm{O}$	C	3 h	80	$n d^{\text {a }}$	2.6	$n d^{\text {a }}$
50	4-oxo-1-benzopyran-3-yl	$5-\mathrm{CH}_{3} \mathrm{O}$	C	2 h	80	$n d^{\text {a }}$		
55	2-(4-oxo-1-benzopyran-3-ylmethylene) benzo[b]furan-3(2H)-one					16.4	3.7	$n d^{\text {a }}$

[^1]compounds: $\mathrm{IC}_{50}=9.5$ and $7.8 \mu \mathrm{M}$ for 39 and 47 instead of $\mathrm{IC}_{50}>10 \mu \mathrm{M}$ for 31 and 33.

The 4-benzopyranone moiety present in those compounds seemed to be an interesting pharmacophore whilst the introduction of other appendages, such as hydroxyphenyl, pyrrolyl or imidazolyl, decreased the level of activity. Attempted evaluation of the incidence of homocycle substitution of 4-benzopyranone (by methyl, chloro or nitro groups) failed due to their insolubility in the assay medium; the only tested compound, 37, was inactive. Study of the effect of 36 on cell cycle phases showed that, at a concentration of $5 \mu \mathrm{M}$, it induced an increase of cells in S and G2 phases; at this concentration, 40% of cells were apoptotic cells (data not shown).

Most of these compounds were also investigated for their ability to inhibit human recombinant SRC kinase. None of them was found to potently inhibit this kinase at a $10 \mu \mathrm{M}$ concentration.

In conclusion, we have synthesized 3-arylmethylenenaphthofuranone analogues of 3-arylmethylenein-dolin-2-ones, known as anti-proliferative compounds. The promising result for a member of this new family (compound 36) prompts us to envision the exploration of new naphtho[1,2-b]furan-3-ones, naphtho[2,3b]furan-3-ones and, by analogy with SU5416, benzo $[e]$ indolinones.

Acknowledgements

The authors are grateful to Florence Sancier for technical assistance in establishing the kinase assay. We thank Servier laboratories for financial support.

References

[1] Morin MJ. Oncogene 2000;19:6574-6583.
[2] Fong T, Shawver LK, Sun L, Tang C, App H, Powell TJ, Kim YH, Schreck R, Wang X, Risau W, Ullrich A, Hirth KP, McMahon G. Cancer Res 1999;59:99-106.
[3] Braud E, Duflos M, Le Baut G, Renard P, Pfeiffer B, Tucker G. J Enz Inhib Med Chem 2003;18(3):253-257.
[4] Sun L, Tran N, Tang F, App H, Hirth P, McMahon G, Tang C. J Med Chem 1998;41:2588-2603.
[5] Braud E, Duflos M, Nourrisson MR, Tonnerre A, Picot C, Le Baut G, Renard P, Pfeiffer B, Tucker G. J Enz Inhib Med Chem 2003;18(3):243-252.
[6] Leonce S, Perez V, Lambel S, Peyroulan D, Tillequin F, Michel S, Koch M, Pfeiffer B, Atassi G, Hickman JA, Pierre A. Mol Pharmacol 2001;60:1383-1391.
[7] Chakrabarti JK, Eggleton RJ, Gallagher PT, Harvey J, Hicks TA, Kitchen EA, Smith CW. J Med Chem 1987;30: 1663-1668.
[8] Andreani A, Rambaldi M, Locatelli A, Bossa R, Galatulas I, Ninci M. Eur J Med Chem 1990;25:187-190.
[9] Jones G. The Knoevenagel Reaction. In: Adams R, Blatt AH, Boekelheide V, Cairns TL, Cope AC, Cram DJ, House HO, editors. Organic Reactions. New York: John Wiley \& Sons; 1967. p 204-273.
[10] Kito T, Yoshinaga K, Yamaye M, Mizobe H. J Org Chem 1991;56:3336-3339.
[11] Lawrence NJ, Rennison D, McGown AT, Hadfield JA. Bioorg Med Chem Lett 2003;13:3759-3763.
[12] Villemin D, Martin B, Bar N. Molecules 1998;3:88-93.
[13] Eaton PE, Carlson GR, Lee JT. J Org Chem 1973;38(23):4071-4073.
[14] Bell IM, Gallicchio SN, Abrams M, Beese LS, Beshore DC, Bhimnathwala H, Bogusky MJ, Buser CA, Culberson JC, Davide J, Ellis-Hutchings M, Fernandes C, Gibbs JB, Graham SL, Hamilton KA, Hartman KD, Heimbrook DC, Homnick CF, Huber HE, Huff JR, Kassahun K, Koblan KS, Kohl NE, Lobell RB, Lynch JJ, Robinson R, Rodrigues AD, Taylor JS, Walsh ES, Williams TM, Zartman CB. J Med Chem 2002;45:2388-2409.
[15] Kadin SB. J Med Chem 1972;15(5):551-552.
[16] Kingsbury CA, Draney D, Sopchik A, Rissler W, Durham D. J Org Chem 1976;41:3863-3868.
[17] Letcher RM, Ng KW. J Chem Res 1989;:198-199.
[18] Lackey K, Cory M, Davis R, Frye SV, Harris PA, Hunter RN, Jung DK, McDonald OB, McNutt RW, Peel MR, Rutkowske RD, Veal JM, Wood ER. Bioorg Med Chem Lett 2000;10:223-226.
[19] Crystallographic data for structures 55 and 35 in this paper have been deposited at the Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC286092 and CCDC-286196., respectively (Supplementary X-ray crystallographic data: Cambridge Crystallographic Data Centre, University Chemical Lab, 12 Union Road, Cambridge, CB2 1EZ, UK; E-mail: E-mail: deposit@ ccdc.cam.ac.uk)
[20] Allen F, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R. J Chem Soc, Perkin Trans 1987;2:S1-S18.

Copyright of Journal of Enzyme Inhibition \& Medicinal Chemistry is the property of Taylor \& Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.

[^0]: ${ }^{a}$ nd: not determined. ${ }^{\text {b }}$ ins: insoluble

[^1]: ${ }^{a}$ nd: not determined. ${ }^{\text {b }}$ ins: insoluble

